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CHAPTER I

_TRODUCTION

1.1 BACKGROUND

Advanced composite materials are playing an increasingly important role in aerospace

structures and spacecraft. However, new high temperature composites will be needed to answer

the challenges posed by 21 st century aeropropulsion structures. These high performance

lightweight structures will be subjected to a variety of complex, severe cyclic and transient

thermal and mechanical loading environments. Research into methods for analyzing the

response of these structures has resulted in analytical tools that can be used to tailor their design

[e.g., Charnis, 1986a] and reduce the need for costly experiments. These analysis methods

combine the micro- and macro-mechanical aspects of computational composite mechanics.

The need to incorporate uncertainties in the inputs and structure modeling for both

analysis and optimum design has also been recognized [Chamis, 1986b; Stock, et al., 1988;

Chamis and Stock 1990; Thanedar & Chamis, 1990; Mase, et al., 1991]. Uncertainties arise at

both the micro- and macro-mechanical levels. For example, uncertainties arise due to the scatter

of the constituent (fiber and matrix) properties, and fabrication process variables. In general, it is

necessary to consider uncertainties in loadings, material properties, boundary conditions,

geometry, and system response and failure modeling.

While the aforementioned analytical methods are effective tools, they can require

considerable computer time. They typically entail finite element analysis of large nonlinear

problems with analysis of progressive failure that requires load stepping and/or time stepping

solutions. A single deterministic problem can strain available resources, hence, the repeated

analyses required for probabilistic simulations and optimal design can be severely constrained.

Fortunately many sources of parallelism are inherent in probabilistic composite

mechanics (PCM) problems. Thus, these problems are ideally suited to computation on parallel

processing computers. However, the software strategies to achieve large-scale parallelism across

a range of parallel architectures do not exist. To achieve large-scale parallelism it will be

necessary to judiciously exploit the multiple levels of parallelism in PCM problems.

Inappropriate parallelization can actually result in reduction of speedup with increasing numbers

of processors. Developments in specially adapted computational strategies, along with the rapid

advances occurring in massively parallel hardware, will significandy speed application of

probabilistic composite analysis and design methods. Use of these methods to tailor composites

and meet reliability-based design criteria will contribute to making application of high

temperature composites in aerospace propulsion possible.

1.2 OBJECTIVES AND SCOPE

The overall goal of this research program is to achieve large-scale parallelism in solving

problems in probabilistic response analysis of high temperature composites. To do this we must
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be able to keep large numbers of processors busy with a minimum of parallel overhead. In

addition, since this research is part of the Small Business Innovative Research program, potential

commercialization of the research is important, and we have adopted a goal to develop a

hardware/software package that is marketable and meets the following requirements: (1) the

software/hardware package should be available for low-end to high-end price ranges (e.g., be

able to operate on networks of workstations to massively parallel supcrcomputers), (2) we should

not require special purpose hardware, and (3) the software should be portable, extensible, and

able to adapt as hardware advances arc made. This report presents the results of the Phase I

research to determine the feasibility of developing such a system. The following specific Phase I

objectives can be enumerated:

° Identify the multiple levels of parallelism in probabilistic response analysis of
high-temperature composites and identify the innovative computational strategies
needed to exploit this parallelism.

.
Evaluate the efficiency of two parallel computing architectures through example

problem applications.

°
Formulate recommendations for optimal hardware configurations for particular

classes of problems, and formulate optimal software strategies for the different
hardware configurations and problems.

To meet these objectives we conducted a number of investigations. These results are

summarized in the following two chapters. In Chapter 2 we present the results of a review of the

phases of PCM, identify the multiple levels of parallelism, and discuss strategies for exploiting

this parallelism. In Chapter 3 we present the results of several software implementation and

hardware efficiency investigations that were undertaken to establish the most promising

approaches to follow in future research and ultimately for commercialization. The software

implementations included a physical shared-memory model (for shared-memory computers), a

message passing model (for distributed-memory computers), and a virtual shared-memory model

(for either architecture, for hybrid architectures, and for networks of workstations). The

hardware implementations included a shared-memory computer with twenty-four processors, and

a disu'ibuted-memory network of seven workstations. Two example problems were executed on

the shared-memory computer (3D Space Truss analysis and a fatigue life reliability analysis) and

one example on the distributed-memory network (fatigue life reliability). In Chapter 4 we

present our conclusions and recommendations. The next section of this chapter provides some

background on parallel processing that will be useful in reading the remainder of this report.

1.3 PARALLEL PROCESSING BACKGROUND

The purpose of parallel processing is to improve the speed with which a computational

task can be done by breaking it into subtasks and executing as many as possible of these subtasks

simultaneously. This idea actually has a long history in computer science, but has received

greater attention recently with the advent of affordable parallel computers. Dramatically reduced

costs of components, such as high speed 64-bit RISC processors, development of efficient
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interprocessorcommunicationstrategies,andreducedcosts of memory are making development

of parallel machines with 1000's of 64-bit processors a reality.

Our purpose here is to define some concepts that are relevant to the research reported

herein. A more detailed summary of the principle ideas in parallel processing can be found in

Sues, et al. [199 la, b]. A survey of the range of parallel architectures currently available is given

by Dongarra and Duff [1992].

The two principal means to instill parallelism into a computer architecture are pipelining

and concurrency. Pipelining refers to the processing of data in an assembly line fashion, the

concept now widely employed in vector processing computers. Concurrency refers to the

simultaneous operation of multiple independent processors. Both concepts are of importance in

parallel implementations of PCM problems. That is, in parallel PCM we want to use multiple

independent processors to perform independent (or pseudo-independent) tasks; but since these

tasks often involve vector operations, each processor should ideally be a vector processor.

Vectorization of the numerical operations in computational mechanics has been studied

extensively and is well understood. It is the use of concurrency that is the focus of this research.

It is concurrency that we wish to exploit to keep large numbers of processors (preferably vector

processors) busy to achieve large-scale parallelism and massive reductions in computation time

for PCM problems.

There have been several attempts to classify computer architectures, or create a taxonomy

for them, but the field is sufficiently dynamic that new architectures which defy existing

classifications continue to be created. A commonly accepted scheme is that of Flynn [ 1966]:

SISD -- single instruction stream, single data stream.
SIMD -- single instruction stream, multiple data stream.
MISD -- multiple insmaction stream, single data stream.
MIMD- multiple instruction stream, multiple data stream.

With regard to the preceding discussion of pipelining (vectorization) and concurrency,

vector processing is typified by the SIMD model and concurrency (for our purposes) by the

MIMD model. Again we note that computers exist that incorporate both architectures, that is

many computers have multiple processors (MIMD), but each processor uses pipelining (SIMD)

for vectorization.

For concurrent processing it is important to make the distinction between shared-memory

and distributed-memory. These different architectures are depicted in Figure 1-1, which also

shows some currently available commercial hardware implementations. Simply stated, shared-

memory machines are composed of multiple processors that are all connected to a central

(global) shared memory; whereas in a distributed memory machine, each processor has its own

local memory, and the local memories are connected via a network. Various means of

connecting processors to a shared-memory and various topologies for distributed-memory

networks are used in practice. While shared-memory provides the fastest way for processors to
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Figure 1-1. Parallel Architectures w Memory Taxonomy.

communicate with each other, the shared memory is also a source of congestion that, in practice,

limits the number of processors. In contrast, distributed-memory machines are already available

with large numbers of processors. The potential drawback here is the need for communication

among the processors. Hybrid machines that combine both shared and distributed memory are

also being developed, although these are at the early stages of commercialization. Hybrid

machines are an exciting development with regard to parallelizing PCM problems because PCM

problems exhibit multiple levels of parallelism that map naturally onto this architecture.

The reason for parallel processing is increased performance; hence we need a measure of

efficiency in order to gauge the relative worth of alternative architectures and algorithms. For

concurrent processing a simple, useful model of speedup is given by

1 (1-1)
SN= a +(1 - ¢x}/N + f(N)

where ¢x is the fraction of the code that cannot be processed in parallel, N is the number of

processors, andf(N) is the overhead (a function of the number of processors). Parallel efficiency

can be defined as

SN. o/,s (1-2)
e=_x 100

where SN, obs is the actual observed speedup and S T is the theoretical maximum speedup obtained

whenf(N) = 0 (forf(N) = 0, Equation 1-1 reduces to Amdahl's law [Amdahl, 1967]). We will use

these def'mitions for evaluating performance later in this report.
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CHAPTER 2

COMPUTATIONAL STRATEGIES FOR PARALLEL PROBABILISTIC COMPOSITE
MECHANICS

2.1 INTRODUCTION

PCM problems have several levels of inherent and derived parallelism. Briefly, the top

level parallelism in PCM problems results from the repeated independent problem solutions

required by essentially all probabilistic analysis methods (e.g., independent trials in Monte Carlo

Simulation (MCS), sensitivity computations in FORMdSORM, perturbation computations in

response surface, independent computations required to treat multiple performance functions in

FORM/SORM etc.). Lower levels derive from dividing the structure into parts and analyzing

these parts using multiple processors.

In order to achieve large-scale parallelism in PCM it will be necessary to judiciously

exploit these multiple levels of parallelism. Inappropriate paraUelization can actually result in

reduction of speedup with increasing numbers of processors. In this introduction we discuss the

need to exploit multiple levels of parallelism. In the remainder of this chapter we provide first a

brief review of mechanics of composites in order to better understand and identify the parallelism

in analysis of composite materials, and then identify computational strategies to exploit this

parallelism.

The most obvious reason to exploit multiple levels of parallelism in PCM is to increase

the degree of parallelism in the problem (i.e., the number of subtasks that can be performed

concurrently). In this way we can keep as many processors busy as possible. This will be

important for small sample MCS methods or for the non-MCS probabilistic analysis methods,

and for deterministic analyses.

A less obvious, but just as important, reason to exploit multiple levels of parallelism in

PCM pertains to memory demand. For solving PCM problems in parallel, if we only exploit the

top level parallelism (see above), the total memory required is roughly proportional to the

number of processors used. Computational mechanics problems typically have large memory

requirements. On a shared-memory machine, the amount of memory is fixed and does not scale

with the number of processors. Hence, as the number of processors used increases, the memory

demand can exceed the physical memory available, resulting in the need to use secondary storage

(i.e., disk). Forcing the use of secondary storage can result in reduction of speedup with

increasing numbers of processors. Thus, lower levels of parallelism can be used in addition to

the top level parallelism to divide the structure into smaller parts and analyze these parts using

multiple processors. For example, on a shared-memory machine with twenty-four processors

wherein it is determined that there is sufficient physical memory to replicate the entire structure

six times, we would break the structure into four parts and perform six independent probabilistic

analysis computations concurrently.
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For a distributed-memorymachine,memory scales with the number of processors so we

do not have the same problem as above. However, if the structure representation (i.e., matrices)

cannot be fit within the local memory, it can be advantageous (and for some machines

mandatory) to again break the structure down into parts that fit within the local memory at the

processor so that, again, secondary storage does not need to be used.

A drawback to multi-level parallelism, however, is that as more levels are exploited, they

tend to become freer and finer grained. That is, the amount of computation that is performed by

a processor before it must communicate results to other processors and/or receive new inputs

from other processors becomes smaller and smaller. Thus, parallel efficiency will decrease.

Hence, it is always advantageous to exploit the coarsest grained parts of the problem first and

then exploit successively finer grained levels. For probabilistic analysis, the top level parallelism

is the coarsest grained part of the problem. In order to effectively exploit the multi-level

parallelism in PCM and achieve large-scale speedup, a top down approach, along with innovative

computational strategies that minimize memory requirements, is needed. A strategy for parallel

PCM is outlined at the conclusion of this chapter.

2.2 BRIEF REVIEW OF DETERMINISTIC COMPOSITE MECHANICS

2.2.1 Introduction

Composite materials consist of two or more different materials that form regions large

enough to be regarded as continua. Composites are typically studied from two points of view:

micromechanics and macromechanics.

In the macromechanics approach, the composite material is treated as a homogeneous

anisotropic material. The structural component being analyzed is assumed large enough so that

the effects of the constituent materials are detected only as averaged apparent properties of the

composite. The material parameters used in an anisotropic material model are usually

determined from simple tests such as tension, compression and simple shear. The

macromechanics approach is extremely useful in global structural analysis and to verify a

micromechanical model.

The main objective of the micromechanics approach is to predict the material properties

of a composite from the properties of each constituent and its volume fraction. The interaction of

the constituent materials is examined on a microscopic scale. Due to the freedom in choosing

constituent materials, volume fractions, and stacking order and arrangement, this approach can

be used to tailor a composite material to meet special design requirements (stiffness and

strength). Also, the uncertainty in the processing, fabrication and manufacture operations can be

incorporated in the micromechanics approach to quantify the statistical distribution of the

material property of a composite. Since the consu'uction of the global material property of a

composite can be divided into independent subtasks in the micromechanics approach, it is ideally

suited for parallel computation.
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For the purposeof identifying parallelism in characterizingmaterial properties of a
compositeandprovidinganefficientcomputationaltool for tailoring high-temperaturestructural
composites,abrief reviewof themicrornechanicsapproachispresentednext.

2.2.2 Micromechanics Approach to Composite Materials

The micromechanics approach is based on the Representative Volume Element (RVE).

The RVE should be large enough to contain a sufficient number of material phases, (i.e., it

should be large compared to the scale of microstructure), but still be small compared to the entire

body. A RVE would retain and represent the properties of the composite medium, which are

insensitive to values of homogeneous boundary conditions. RVE provides a valuable boundary

between continuum theories and microscopic theories.

Under conditions of an imposed macroscopically homogeneous stress or deformation

field on the RVE given by

Ui=4 xj, Ti= tyO nj (2-1)

where eij and tr ° are constant strain and stress, respectively, and nj is the normal direction to the

component boundary, the average stress and strain are respectively defined by

_-#=l £ trij(x) dV
(2-2)

g ij = l f, eq(x) d v
(2-3)

where V is the volume of the RVE. The effective properties of a composite are defined by

i3-ij = Cola g td ; gO = Sijkt iY'gt (2-4)

where C_jta are effective elastic moduli and Sij _ are effective elastic compliances, connected by

the usual reciprocity relation.

Based on the average theorem of virtual work [Hashin, 1972], an alternative definition of

effective physical properties can be given in terms of strain energy and stress energy as shown

below:

ue = l c_j_ -gij g ja V = We V
(2-5)

,U a = Si?,.l ffij _ V = W a V
(2-6)

where U e is strain energy, and U a is stress energy.
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Themain objectiveof the micromechanics approach is to determine the effective elastic

moduli C_jta or effective compliance S_jta in terms of the correspondence of the constituent

materials and their volume fraction. Due to the complexity in determining stress and strain fields

in a multi-phase system, various approximate techniques have been used. Two approaches have

been used extensively in deriving the effective properties of a composite, namely, the strength of

materials approach and the solid mechanics approach with various levels of mathematical

sophistication. An excellent review on the analysis of composite materials has been given by

Hashin [1983].

The solid mechanics approach has been employed for both dilute and finite

concentrations of second phase materials (fibers, spherical particles, fibrous and platelet

reinforcements). For a dilute concentration of inclusions, Eshelby's solution [1957] has been

used to determine the effective bulk and shear modulus for spherical inclusion composites

[Hashin, 1959] and for short fibers and platelet composites [Christensen, 1979]. A solution for

rigid spheres embedded in the incompressible elastic matrix has been resolved by Batchelor and

Green [1972].

Two of the most commonly used models for the case of t-mite concentration of inclusions

are those of the composite spheres model [Hashin, 1962] and the self-consistent scheme

[Budiansky, 1965; Wu, 1966]. The generalized self-consistent scheme based on the three-phase

model has been proposed by Christensen and Lo [1979, 1986] for the determination of the

effective shear modulus. The main problem of the self-consistent scheme is that it takes

enormous liberties with the geometry of the material combination. In other words, the geometry

is successively rearranged to view the phase under consideration as an inclusion, even if the

phase is completely continuous. A problem with the composite spheres model is that it cannot

provide reasonable results for systems containing single size inclusion at high concentration.

Other models based on the differential scheme [Norris, 1985], the Mori-Tanaka theory [Taya and

Arsenault, 1989; Benveniste, 1987], and the Eshelby equivalent inclusion method [Mura, 1982]

have also been proposed recently to quantify the effective material properties of a multiphase

media.

The solid mechanics approach, based on the theory of micromechanics, normally gives

the expressions for the effective properties of a composite in a complicated form. Furthermore,

the properties predicted by various micromechanics models have a large scatter [Chamis and

Sendeckyj, 1968].

The earliest and simplest strength of materials approach was based on Voigt [1910] and

Reuss [1929] approximations. Voigt analyzed the multi-phase system by assuming uniform

strain in all the phases, and Reuss by assuming uniform stress in all phases. The deficiency of

the Voigt model is that it introduces non-equilibrium tractions at the phase boundaries, while the

Reuss model results in strain incompatibility at the phase boundaries. Hill [1952] proved that the

actual overall moduli lie somewhere in the interval between that given by the Reuss and Voigt

models. Thus, the Voigt and Reuss models provide the upper and lower bounds of the true

effective elastic moduli.
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The strengthof materials approach,along with empirical factors, determined from

experimental data was proposed by Halpin and Tsai [1967] for fiber composites at low fiber

volume fractions. A unified set of micromechanics equations was developed by Chamis [ 1983]

for predicting unidirectional ply geometric, mechanical, thermal, and hygral properties. This set

of equations provides a useful tool for characterizing any transversely isotropic composite (a

lamina).

Laminated composites have been used extensively in automobiles, aircraft and space

structures. A laminate is two or more laminae bonded together to act as an integral structural

element. Due to different fiber orientations in different lamina (or ply), the composite laminate

can be designed to resist load in several directions. The material properties of a laminate are

obtained from the properties of the constituent laminae by lamination theory. The effective

properties of a lamina, which is a fiat arrangement of unidirectional fibers in a matrix, can be

generated from the micromechanics model as discussed before.

The two-phase composite, lamina, has a structure in which the fibers are arranged in a

periodic manner thus forming a periodic array. This periodic structure allows the analysis of a

lamina using a single cell. The single cell acts as a building block such that the continuum can

be constructed by repeated use of this element. The relations between the average stress and

strain can be obtained from the previous micromechanics analysis. The final effective moduli of

a lamina can thus be determined.

From the effective properties of each lamina, lamination theory can be applied to

determine the mechanical properties of the laminate. Existing lamination theories can be

classified into three types: (1) displacement-based theories (classical thin plate theory [Reissner

and Stavsky, 1961; Srinivas and Rao, 1970], first order shear deformation theory [Yang, et al.,

1966; Whitney and Pagano, 1970; Bert, 1984], and higher order theories [Whitney and Sun,

1973; Reddy, 1984]); (2) discrete laminate theories [Seide, 1980; Murakami, 1986]; and (3)

stress-based theories [Pagano and Soni, 1983; Green and Naghdi, 1982].

2.3 PROBABILISTIC COMPOSITE MECHANICS

The deterministic characterization of effective properties of a composite has been

discussed. However, due to the inherent heterogeneity of the composite material and uncertainty

in the fabrication process, large scatter in the physical properties of a composite has been

observed from experiments. For a laminated fiber-reinforced composite, three levels of

uncertainty may exist. They are: (1) constituent level (fiber & matrix properties); (2) ply level

(fiber volume ratio, void volume ratio, etc.); and (3) composite level (ply angle and lay-up)

[Mase, et al., 1991].

Recent research has begun to develop probabilistic composite mechanics methods to

consider these uncertainties in the design and analysis of composite structures. Chamis and

Stock [1990] have used Monte Carlo simulation and micromechanics methods to evaluate the

uncertainties in unidirectional fiber composite strengths from uncertainties in the constituent
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properties. For damage and failure analysis, a stochastic damage model for the rupture

prediction of a multi-phase material has been developed recently by Lua, et al. [1992a, 1992b],

and the effect of a microdefect on the fatigue life and crack path has also been studied most

recently by using the stochastic boundary integral element method [Lua, et al., 1992c, 1992d].

The probabilistic finite element method has been used by Engelstad and Reddy [1991] for the

analysis of laminated composite shells. In this work the fh'st-order second-moment method was

employed to compute the mean and variance of the response. The unique set of micromechanics

equations, coupled with the Fast Probability Integration (FPI) method, has been used by Mase,

et. al. [1991] to determine the cumulative distribution function for selected laminate properties.

The MCS method was also used by Mase, et al., 1991] to evaluate the accuracy of FPI. For

design, Thanedar and Chamis [1990] describe how to tailor the design of laminated composites

with probabilistic constraints. Mild, et al. [1992] used the advanced lru'st-order second-moment

method (AFOSM) for optimum design of a composite subject to reliability-based constraints.

2.4 PARALLELISM IN PCM AND EXPLOITATION STRATEGIES

2.4.1 Introduction

From the review of probabilistic composite mechanics, we can identify three main

sources of parallelism: (1) parallelism in the general probabilistic computations; (2) parallelism

in the general structural mechanics computations; and (3) specialized parallelism in the

probabilistic composite mechanics analysis. Parallelism in the general probabilistic

computations has been discussed in detail by Sues, et al. [1991a, b]. This work showed that the

degree of parallelism depends on the particular probabilistic method employed. Table 2-1

summarizes the parallelism in several probabilistic methods. Parallelism in the general structural

mechanics computations has also been reviewed by Sues, et al. [1991a, b]. Farhat [1992]

provides a recent review of methods of parallelization for general finite element applications.

Hence, we focus here on the parallelism in composite mechanics, in particular, characterizing a

composite laminate and specialized parallelism in PCM.

TABLE 2-1. SOURCES OF PARALLELISM IN VARIOUS PSM METHODS.

Method

FORM/SORM

Direct Monte Carlo

Monte Carlo with
Variance Reduction

Repeated Performance
Function Evaluations for

Perturbed Inputs

X

X

X

Multiple CDF
Values

X

X

Multiple
Failure Mode

Analysis

X

X 1

X

Different Structural

Response Locations of
Interest

X

X

;Hybrid
X X X X

1 Only when different analysis model or method is used for different failure modes.
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2.4.2 Parallelism in Probabilistic Response of a Composite Laminate

To analyze the response and predict the failure

mechanism of a structure made of a laminated composite

material, the material properties of the laminate have to be

detemxined. Knowledge of how to predict the properties of the

laminate from its constituents is also essential in tailoring the

laminate to meet particular structural requirements. To

demonstrate the inherent parallelism in determining laminate

properties, a five-ply laminate is considered here (see Figure

2-1). The laminate is made of a stack of five lamina with

various orientations. A typical lamina consists of a regular

arrangement of fibers in a matrix. A typical lamina with

woven fibers is shown in Figure 2-2.

In probabilistic analysis of the laminate properties, the

properties of the fiber and matrix, the orientation of the fiber

and volume fraction of each constituent (fiber or matrix) are

basic random variables. For a particular simulation trial or

sensitivity analysis, the ply properties need to be generated

,/.,/,/'/" /

f'/ _ Ply 3

[ o o o o o i/r -

Figure 2-1. A Five-Ply
Laminate.

individually and independently for each realization of these basic random variables (unless the

material properties of the different plies are identically distributed and perfectly correlated). For

the lamina with unidirectional fibers and linear constituent behavior, the unique set of

micromechanics equations [Chamis, 1983] can be used to generate the material properties for

each ply. While this computation can be performed in parallel, it is relatively fine-grained due to

the analytic form of the micromechanics equations.

For the case of nonlinear constitutive behavior of the constituent (fiber or matrix) or for a

complex arrangement of fibers in a matrix (see Figure 2-2), finite element analysis has to be

performed on a representative cell to determine the overall behavior of the lamina. Most fiber-

reinforced materials with polymeric matrices exhibit nonlinear response due to viscoelastic

effects. Environmental conditions, such as temperature and humidity, accelerate the viscoelastic

process. Another kind of nonlinear behavior commonly exists in metal matrix lamina due to

plastic deformation in the metal matrix. In addition to the nonlinear material behavior, the

complex arrangement of fibers in the matrix may make the direct application of the

micromechanics equations infeasible. For example, to account for the effect of curved fibers in

the lamina with woven fibers (see Figure 2-2), the finite element model, shown in Figure 2-3, for

a representative cell has been used. Similarly, finite dement analysis of a unit cell has been

performed to obtain the thermo-mechanical properties of a braided composite [Frank, et al.,

1991].

Finite element methods have also been used to determine the effective elastic properties

for square or hexagonal periodic arrays of identical circular fibers. The computational model is
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Figure 2-2. Lamina with Woven
Fibers [Jones, 1975].

Figure 2-3. Finite Element Model of a Representative
Volume Element for a Woven Lamina [Jones, 1975].

based on the typical repeating element of the array, with the boundary conditions determined by

symmetry conditions. The displacement and traction continuity conditions at the interfaces of

the element, as well as at the interfaces between neighboring elements, are imposed in

conjunction with the equilibrium conditions. The final analysis leads to relations between the

average stress and strain from which the requested effective properties are determined.

Due to the versatility of the finite element method, non-homogeneity and nonlinearity of

the material can be incorporated along with various interface boundary conditions. Finite

element analysis can be performed in parallel for each ply to generate the ply properties. As the

FEM is computationally intensive, especially for nonlinear problems (where ply properties may

need to be updated during the analysis), the problem is fairly coarse-grained and high parallel

efficiency can be expected. In addition, in many cases the thermal and mechanical properties can

be obtained independently and thus in parallel.

With the properties of each ply determined, the mechanical properties of a laminate can

be constructed using lamination theory. Various lamination the,odes have been given in Section

2.2. Since the local and interfacial behavior of a laminate is critical in determining the local

damage and delamination, the discrete laminate theories [Seide, 1980; Murakami, 1986] can be

employed to provide an accurate analysis. In this approach, each lamina is treated as a

homogeneous anisotropic plate whose properties are determined from the lamina constituent

materials properties. The governing equations of all these plates are coupled through

interlaminar continuity equations. To achieve greater accuracy each lamina can be divided into a

number of layers. Since different parts of the structure can have different laminate properties,

due to spatial variation of material properties and due to spatial variation in damage as loading

progresses, independent laminate (and ply) property computations will need to be performed for

different parts of the su'ucture. These computations can be performed in parallel.
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2.4.3 Comprehensive Strategy for Parallel PCM

Based on the foregoing analyses we can outline a comprehensive strategy for parallel

solution of PCM problems. The approach is based on a top-down decomposition that exploits

the coarsest grained part of the problem first and moves to additional levels of finer granularity

as necessary. Thus, we first exploit the parallelism that is inherent in the probabilistic

computations (see Table 2-1). As indicated at the beginning of this chapter the number of

additional levels of parallelism that are exploited depends on several factors: (1) the number of

independent problem solutions required by the probabilistic analysis, (2) the memory required

for each solution, (3) the number of available processors, (4) the memory/processor, and (5) the

memory configuration and/or communications architecture/bandwidth. Development of an

automated control algorithm to invoke the optimum number of additional levels of parallelism

based on these parameters is a proposed research task for Phase II and is discussed in more detail

in the Phase II proposal. 1

The computational strategy for parallelizing the additional levels of parallelism in PCM

combines a "divide and conquer" domain decomposition strategy with two innovative

techniques, probabilistic substructuring and the SPCG (stochastic preconditioned conjugate

gradient) equation solution procedure [Sues, et al., 1992]. Using these techniques, the overall

approach is inherently parallel. The approach also minimizes memory requirements. The overall

approach is depicted in Figure 2-4 for an example turbine blade analysis model and consists of

three major decompositions: (1) probabilistic substructuring; (2) structural domain

decomposition; and (3) composite material decomposition. The SPCG solver is used to solve the

systems of equations in parallel without actually forming the global stiffness matrix.

Probabilistic Substructuring. Probabilistic substructuring is used prior to execution of

the probabilistic computations in order to reduce the memory/processor requirements (a key to

achieving parallel efficiency) and to reduce the execution time of each problem solution required

in the subsequent probabilistic analysis. A boundary element method analog to probabilistic

substructuring will be evaluated in the example problem calculation (see Chapter 3).

The probabilistic substructuring technique is illustrated in Figure 2-4b. The figure is an

idealization that depicts a characteristic of many thermo-mechanical analysis problems. That is,

there are regions that require detailed modeling ("hot spots") and regions that can be modeled in

a coarse fashion. The regions requiring detailed modeling correspond to regions of high stress or

thermal gradients, resulting from geometric discontinuities (holes, bends, intersections, etc.) or

applied loads (mechanical or thermal). These regions are likely locations for initiation of failure,

such as crack initiation and, for layered composites, intedaminar delamination. For probabilistic

analysis, the regions requiring detailed modeling will also require more detailed treatment of

uncertainties and, therefore, considerably more computational effort in both the probabilistic and

thermo-mechanical aspects of the problem.

1Due to the limited scope of this Phase I feasibility study, parts of the computational strategy were tested and
implemented herein (see Chapter 3); specifically, top level parallelism, probabilistic substructuring, and coding of
two levels of parallelism. Fully integrated implementation is proposed for Phase II.
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a. Full Turbine Blade Analysis M_ b. Probabilistic Substructuring

mechanical
calculations:

Parallel thermal,
mechanical, hygro

analysis.

Parallel ply
analyses.

Parallel formation

of superelements
(to model spatial

variability).

c. Domain Decomposition d. Composite Mechanics Decomposition

Figure 2-4. Computational Strategy for Parallel PCM.

For parallel implementation, multiple processors are first used to develop each of the

superelements (we have shown two here for clarity; in practice more would be used, depending

on the structure, load, and materials). This is accomplished by assigning one processor per

superelement. Once the superelements are formed, the probabilistic analysis of the entire

structure, which now has a much reduced number of degrees of freedom, proceeds. The

structural properties of the superelement are treated deterministically; however loadings on the

superelement can still be treated as random. The key contribution of this approach is in greatly

reducing the memory requirements of the probabilistic analysis that, as will be shown in Chapter

3, can have a profound impact on the parallel efficiency.
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Domain Decomposition. Structural domain decomposition is next used to break the

structure down into distinct physical domains (illustrated by the redlines in Figure 2-4c). Each

domain is assigned to a processor;, thus, each processor carries out the following computations

(including the composite macro and micro-mechanical computations for the domain)

independent of similar computations for the other domains and hence in parallel:

o

2.

3.
4.

5.
6.

Micro- and macro-mechanics computations for the subdomain.

Superelement computations for the subdomain.
Formation of element matrices.

Assembly of global matrices (for the subdomain).
Partial factorization of the stiffness matrix.
State determination or evaluation of the generalized stresses.

Composite Material Decomposition. The next level of parallelism is at the composite

material micro and macro-mechanical level. This level represents a finer grain parallelism than

the prior parallel sources and is invoked when processors are available and communications

bandwidth allows speedups to be obtained. At this level multiple processors are used to perform

micro and macro-mechanical material property computations (i.e., initial element material

property values and element material property updates during the structural computations) as

described in Section 2.4.2.

Parallel Stochastic Preconditioned Conjugate Gradient Solver (SPCG). The stochastic

preconditioned conjugate gradient solver is a very effective procedure for solving the systems of

equations in probabilistic finite element analysis [Sues, et al., 1992]. This solver is also ideally

suited for parallel implementation since it is an iterative approach that requires only matrix-

vector multiplications and vector dot products. In addition, the solver has been shown to be

efficient for use with sparse schemes so that memory requirements can be minimized for large

3D problems.

5721 2-11



CHAPTER 3

PARALLEL IMPLEMENTATION ON SHARED- AND DISTRIBUTED-MEMORY
ARCHITECTURES

3.1 INTRODUCTION

Several software implementations and hardware efficiency investigations were

undertaken to establish the most promising approaches to follow in Phase II and ultimately Phase

lIl commercialization. The software implementations inchded a physical shared-memory model

(for shared-memory computers), a message passing model (for distributed-memory computers),

and a virtual shared-memory model (for either architecture, for hybrid architectures, and for

networks of workstations). The hardware implementations included a shared-memory computer

with twenty-four processors, and a distributed-memory network of seven workstations. The

following summarizes these investigations and the purpose for each.

. Shared Memory, Alliant FXI2800. Two problems, one with small memory
requirements (a 3D space truss) and one with larger memory requirements
(fatigue life reliability of a plate with an initial defect via the stochastic boundary
element method). The purpose here was to investigate the affect of memory

requirements on parallel efficiency for shared memory systems. Parallel speedup
studies were performed using one to twenty-four processors.

. Distributed Memory Software Development using Message Passing Paradigm.
Code was developed for solving the fatigue life reliability problem using CS
Tools to investigate the feasibility of parallelizing probabilistic analysis using the

message passing paradigm.

. Distributed Memory Software Development using Virtual-Shared Memory

Paradigm. Code was developed for solving the fatigue life reliability problem
using C-Linda to investigate the feasibility of parallelizing multiple levels of
parallelism using the virtual shared-memory paradigm. Both the Monte-Carlo
simulation loop and computation of the influence coefficients during each
simulation history were parallelized.

. Distributed-Memory Network. The feasibility of achieving parallel speedup on a
distributed-memory network of workstations using the virtual shared-memory

programming paradigm was investigated. Parallel speedup studies were
performed for the fatigue reliability problem using one to seven workstations.

3.2 SHARED-MEMORY ARCHITECTURE

3.2.1 Alliant FX/2800 Shared-Memory Architecture

Figure 3-1 shows the architecture of the Alliant FX/2800. As shown, six processor

modules containing four 64-bit Intel i860 processors, are connected with the global cache

through the crossbar switch with a bandwidth of 1.28 GB/Sec. Each processor module has two

I/O channels to the global cache, each having a bandwidth of 80 MBISec. The memory size for
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Figure 3-1. Alliant FX/2800 Architecture

each cache module is 500 KB; eight modules give a total of 4 MB. The cache modules connect

to the main-memory with a total bandwidth of 640 MB/Sec (which is half the bandwidth from the

process modules to global cache). Each memory module has a size of 64 MB and sixteen

modules give a total of 1 GB.

3.2.2 Physical Shared-Memory Programming Paradigm

Parallelism in a computer program can be divided into three types, namely: (1)job-level

parallelism; (2) sub-program ("task" or "macro") parallelism; and (3) loop-level ("micro")

parallelism. Due to the special FORTRAN compiler on the Alliant, the micro parallelism is

invoked automatically provided that no dependencies exist within the loop or between iterations

(on other shared-memory computers special directives can be required). In addition to the

concurrent execution of the loop, additional levels of micro parallelism can be added within the

loop by using optimization directives, such as "ASSOC" (Optimize associative transformations),

or "Vector" (optimize for vectorization) to maximize efficiency. To achieve macro parallelism

or task parallelism, sub-tasks are grouped into recursive subroutines. As a characteristic of the

recursive subroutine, a unique copy of all the local variables within the recursive subroutine is

created for each concurrent process.
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For MCS all subtasksthatarereplicatedduring each simulation (sampling, performance

function evaluation, and scoring) are grouped into a recursive subroutine. This subroutine can

then be executed concurrently since a unique copy of all local variables within the subroutine is

created. An analogous approach can be used for other probabilistic methods, such as

FORM/SORM, where sampling is replaced by variable perturbations at the current design point

estimate. To enable parallel implementation, however, we must first use special compiler

directives and coding strategies to remove dependencies between each call to the recursive

subroutine. Two types of data dependencies exist in MCS. They are: (1) pseudo-random number

generation in which the i-th random number of the sequence, x(i) depends on x(i - 1), and (2)

scoring of the simulation results.

First, since the compiler will not automatically optimize a loop containing a subroutine

call (because of the possibility for data dependency between loop iterations), optimization

directives embedded in the code can be used to change the default optimization actions. Thus, by

preceding the loop with a concurrent call directive and declaring the subroutine to be recursive,

the concurrent execution of the loop can be achieved as shown below:

CVD$
Program main
CNCALL

do i=l,n
call sub(a,b,c)

end do

...

end
recursive subroutine sub(a,b,c)

x=f(a,b,c)
end

where CVD$CNCALL is the concurrent call directive for the Alliant, a, b, c are global (shared)

variables, and x is a local variable. For parallel implementation of MCS, all random variables

and related parameters must be defined as local variables so that a unique copy of these variables

will be maintained for each concurrently executing subprogram. Conversely, deterministic

problem variables and related parameters can be passed through the subroutine argument list or

maintained in a common block, to be shared by all concurrently executing processes in order to

minimize memory requirements and maximize computational efficiency.

To remove the data dependencies in parallel random number generation and scoring, a

memory sectioning approach is employed to treat the shared-memory machine as a pseudo

distributed-memory machine. By logically partitioning the shared memory into sub-memories

and assigning each sub-memory a number that corresponds to a processor number, both random

number generation and scoring can be performed independently within a processor's own

logically-local memory. For example, in the parallel random number generation, a set of initial

random seeds are generated for each processor and stored in its own logically-local memory. On

each invocation of simulation trial, a function call to the Alliant's system library function

LIB_PROCESSOR_NUMBER is first executed which returns the processor number of the

processor that is allocated to the particular trial. The processor number is used to locate the
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addressof its own memory and fetch the previous set of random numbers from the memory to

generate the next set of random numbers. By doing so, in the concurrent process of the

simulation trials, each processor generate its own data stream and scoring results. The results

stored in each local memory (i.e., the section of the shared memory) will be scored after the

simulation is completed. In order to maximize the problem granularity by using all available

processors to execute simulations on all the processors concurrently, automatic compiler

concurrency is suppressed within each simulation.

3.2.3 3D Space Truss

3.2_3.1 Problem Description and Probabilistic Analysis Results

The fh'st example considered is a MCS analysis of a 3D space truss composed of 99

members with 72 degrees of freedom. The purpose of choosing this simple structural mechanics

problem is to explore the performance of the shared-memory machine for a small problem. For

the present 3D truss problem, the problem can fit completely in the global cache without using

the main memory (Figure 3-1). This problem also served as a benchmark since it was studied in

earlier work by Sues, et al. [1991a, b] on an Alliant FX/80 with eight processors.

Figure 3-2 shows the front panel and

section details of the truss. The truss is

made up of three panels so that the cross

section is an equilateral triangle. It is simply

supported at three points on the bottom and

is capped by a pyramid at the top. The apex

of the pyramid is circumferentially

constrained so that only vertical movement

is possible. Three loads are applied to the

structure, a vertical load at the apex and two

horizontal loads. The problem random

variables are: the member elastic moduli,

the member cross sectional areas, the initial

strain in the members and the loadings S 1,

$2, and $3. Statistical descriptions of the

random variables are given in Tables 3-1

and 3-2. A sample size, Nsim = 10,000, is

used in the MCS. For probabilistic analysis,

the performance function was defined to

obtain the cumulative distribution [unction

(CDF) for the stress in the rear vertical

element at the base of the truss. The CDF is

shown in Figure 3-3.

® V
oo B

Mv

$3

A-A

N.

Mh_MvI B-B

-10'--!

Plane I

Figure 3-2. 3D Space Tress Example -- Front
Panel.
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TABLE 3-1. MATERIAL PROPERTY RANDOM VARIABLES FOR 3D SPACE TRUSS.

Material

Type

Mv

Mhi

Mhrl

Mhm

Mbi

Mbm

Mt

E (_=o.lo)

(_')

29000.

29000.

29000.

29000.

29000.

29000.

29000.

29000.

A (a=o.lo)

(sq. in)

1.590

1.590

1.590

1.590

0.938

0.938

0.938

1.590

E = mean modulus of elasticity 0ognormal r.v.)

A = mean bar cross-section area (lognormal r.v.)

eint = mean initial strain in bar element (normal r.v.)

8 = coefficient of variation

o = standard deviation

ei_ (o_=10-4)

O°

0.

0.

0.

0.

0.

0.

0.

TABLE 3-2. LOADING RANDOM VARIABLES FOR 3D SPACE TRUSS.

Load

$1

S2

S3

Type mean
(kips)

Lognormal 10.0

t_gnormal 10.0

Log.ormal 500.0

0.25

0.25

0.25

Figure 3-3.

o

o
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0.8

0.6

0.4

0.2

i
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I

-140 -120 -100 -80 -60

Member Stress (ksi)

CDF for Stress in the Rear Vertical Element at the Base of the 3D Space Truss.
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3.2.3.2 Parallel Performance

The memory requirement for this example to run on one processor is 312 kB. The size of

the data-set, that needs to be replicated for each concurrent simulation trial execution is 56 kB.

Thus, when using twenty-four processors there will be twenty-four simulation trials executing

concurrently for a total memory demand of 1.6 MB. Since the memory size for the global cache

(see Figure 3-1) is 4 MB, the code can be run on twenty-four processors without using the main-

memory. Due to the high bandwidth from the processor module to the global cache, high

efficiency and speedup can be obtained. Note that for a problem wherein adding processors

causes a need to use slower memory, a drop in efficiency would be expected at the point that

slower memory is required (we will see this effect in the next example problem).

The FX/2800 architecture supports four processors on each processor board, as illustrated

in Figure 3-1. However, as detailed in Figure 3-4a, there are only two 80 MB/sec

communication channels from each board to the global cache (through the crossbar switch).

Thus, the manner in which processors are allocated will affect parallel efficiency. To investigate

the influence of this effect and also to estimate the fraction of parallel overhead due to

communication channel contention, two different configurations were used to allocate processors

in the system -- namely, two processors per board (2/board), and four processors per board

(4/board). These configurations are illustrated in Figure 3-4b. In the 4/board configuration, four

processors on a processor module are used first before allocating a processor on a new board. In

the 2/board configuration, two processors on each module are allocated for the first twelve

processors. After that, one more processor is allocated at each board. The 2/board configuration

is designed to maximize bandwidth. If only two processors in a board are used, the bandwidth is

80 MBIsec for the board. On the other hand, if all four processors on a board are allocated, the

bandwidth of the board reduces to 40 MB/sec. Hence, even in the 2/board configuration, we

expect a degradation in parallel efficiency with more than twelve processors.

The comparison of the speedup factors for these two configurations along with the

theoretical speedup is plotted in Figure 3-5. Theoretical speedup is computed using Equation 1-

1. The difference in the value of speedup for the two processor allocation configurations is

relatively small since the amount of data to be fetched directly from global cache is small. The

closeness of the actual speedup to the theoretical speedup, even at twenty-four processors,

demonstrates the high efficiency of the present approach for this small size problem. We should

also point out that a significant portion of the loss of speedup at twenty-four processors is due to

communication channel contention (i.e., since we have four processors on each board sharing

two channels). This is evident if we extend a straight line through the four-processor and eight-

processor speedup values of the 4Fooard configuration out to twenty-four processors. The

difference between the actual speedup and this straight line is approximately the true loss due to

conventional parallel overhead (i.e., management of concurrent processes, memory contention,

and processor idling).
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Figure 3-4. Alliant FX/2800 Processor Allocation Configurations.
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Figure 3-5. Parallel Speedup for 3D Space Truss on Alliant FX-2800.
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Parallel efficiency (actualspeedup divided by theoretical speedup, see Equation 1-2) for

the two configurations is shown in Figure 3-6. This figure more clearly illustrates the difference

in efficiency for the two configurations. The oscillation in efficiency for the 4/board

configuration can be understood by examining Table 3-3. In Table 3-3 the value of efficiency

for different numbers of processors is shown along with the corresponding value of the average

bandwidth. Average bandwidth is a measure of the average data transfer rate. For example,

when the code is run using six processors in the 4/board configuration (four processors on the

first board and two processors on the second board), the average value of the bandwidth is given

by (4 * 40 + 2 * 80)/6 = 53.33 MB/Sec. The oscillation in the value of efficiency shown in Table

3-3 is consistent with the variation in the value of the average bandwidth up to twelve processors.

As the number of processors increases beyond twelve, conventional parallel overhead becomes

dominant and efficiency declines monotonically.

100

,-, 98

96

94

92

90

_ ,e -oard ' ' .... ' .... ' ....

I
• , , . I _ * • • I , , , , I .... I , • * *

5 l0 15 20 25

Number of Processors

Figure 3-6. Parallel Efficiency for 3D Space Truss on Alliant FX/2000.

Referring again to Figure 3-6, due to the higher average bandwidth in the 2/board

configuration than that in the 4/board configuration, the value of efficiency in the 2/board

configuration is always higher than that in the 4/board configuration. Note the sharp drop in

efficiency for the 2fooard configuration when we go beyond twelve processors. This is the point

where average bandwidth first reduces for this configuration. The steepness of the slope (beyond

twelve processors) is in large part due to the memory channel contention. The gentler slope of

the 4/board configuration is indicative of the efficiency loss due to conventional parallel

overhead.

The previous timing studies used 10,000 Monte Carlo trials. Thus, we next investigated

the affect of using a smaller sample size on the speedup. A comparison of the actual speedup for

sample sizes of 1000 and 10,000 is shown in Figure 3-7. The loss in speedup is due to the fact
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TABLE 3-3. EFFECT OF AVERAGE BANDWIDTH ON PARALLEL EFFICIENCY FOR
3D SPACE TRUSS ON ALLIANT FX/2g00 (4/BOARD CONFIGURATION).

Number of _ors

1

2

4

6

8

10

12

14

16

18

20

22

24

Efficiency (%)

100.00

I00.00

96.64

97.26

95.63

96.27

95.04

94.91

93.55

93.24

92.07

91.52

89.95

Average Bandwidth (MB/Sec)

80

80

40

53.33

40

48

40

45.71

40

44.44

40

43.636

40

Speedup

1.0

2.00

3.85

5.79

7.56

9.48

11.20

13.00

14.60

16.31

17.84

19.44

20.78

5 , ' I , , ! , , I I

20

9
15

"_ 10

0

0 5 10 15 20 25

N (CPU)

Figure 3-7. Variation of Parallel Speedup with Number of Simulation Trials.

that the fraction of sequential calculation (a in Equation 1-1) for 1000 samples is equal to

0.016529; whereas, the fraction of sequential calculations for 10,000 samples is 0.001698. Even

though more than 98% of the work in the 1000-sample ease (i.e., 1 - a > 0.98) can be performed

in parallel we observe a drop-off in the speedup for twenty-four processors. It is important to

bear this realization of Amdahrs law in mind when designing a massively parallel

implementation. Fortunately, for most problems of practical interest, a will be much less than

the values here, as we will see in the next section.
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3.2.4 Fatigue Crack Growth

3.2.4.1 Problem Description and Probabilistic Analysis Results

Fatigue failure is an important factor in the structural design and safety of many

structures. Due to uncertainties in the cyclical mechanical and environmental loading, in the

material properties of advanced materials (composites and ceramics) and in the shortcomings of

analytical models, probabilistic methods are needed to ensure reliable designs and to assess the

safety of existing structures. Probabilistic fatigue analysis is also particularly useful in

combination with nondestructive evaluation techniques. Because the threshold of detection is

substantially greater than flaw sizes that may lead to failure over the course of time, probabilistic

description of flaws is necessary and inspection cycles should be set so that the reliability of an

aging structure remains acceptable. Although a deterministic analysis can obtain an estimate of

the fatigue life, the uncertainties in crack growth rates and the initial crack length detract from

the usefulness of such solutions.

Due to the randomness in the location and orientation of the initial crack and the

influence of the component boundary on the crack tip stress field, the resulting fatigue crack path

is curvilinear. In order to characterize the curvilinear fatigue crack growth, a remeshing scheme

together with crack tip singular elements has to be used in the finite element formulation. For

problems of multiple fatigue cracks in which elastic interactions of a fatigue crack with micro-

defects are treated, the remeshing scheme will be prohibitively complicated. In order to remedy

this difficulty, the stochastic boundary element method (SBEM) developed by Lua, et al. [ 1992c]

is employed to predict the fatigue life.

In the SBEM method, since the component boundary remains unchanged during the

process of the fatigue crack growth, the influence matrices resulting from the component

boundary are generated first and used in the subsequent fatigue crack growth stage. Further,

when the material properties between the crack and the boundary are treated deterministically,

these influence matrices are independent of the problem random variables. This treatment

significantly reduces the computational effort of the probabilistic analysis since the matrices only

need to be formed once, prior to execution of any probabilistic computations. This approach is a

boundary element method analog to the finite element probabilistic substructuring method

presented in Section 2.4. Notice here that all of the dominant uncertainties can still be treated

(i.e., loading, initial crack size and orientation, and the fatigue law parameters).

Figure 3-8 shows a square plate containing a single edge crack with a random initial

crack length and crack angle subjected to a uniformly distributed load. The plate geometry,

initial crack location, final crack size, and material constants are deterministic parameters given

by

L = W = 2.5 in, x0 = 1.25 in, Y0 = 0.0 in (3-1)

af= 0.5 in,/z = 80000.0 psi, v---0.3
(3-2)
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Figure 3-8. Single-Edged Fatigue Crack Growth Example.

where/_ is the shear modulus and v is the Poisson's ratio. The crack geometry (ai, a) external

load (P), and fatigue parameters (D, n) are assumed independent random variables with specified

probability density functions. The statistical parameters of the input random variables (mean and
standard deviation) along with corresponding distribution functions are listed in Table 3-4. As

shown in Table 3-4, the initial crack size, ai, has the largest dispersion (COV -- 60%).

Figure3-9 shows theprobabilitydensityfunctionoftheinitialcracksize.The detection

threshold,which isequal to 7.5E-03,representsthe lower limitof the device to detectthe

presenceof a small initialcrack. Below the detectionthresholdthe probabilitydensityis
assumed uniform; above the thresholdthe probabilitydensitydecays linearlyto zcro,

representingfalsenegativesoftheinspectiontechnique.

TABLE 3-4. FATIGUE LIFE RELIABILITY PROBLEM RANDOM VARIABLES.

Random Paramemrs Distribution Mean [ Standard Deviation G

Crack Angle, a (rad/ans)
Initial Crack Length, ai, (inches)

Fatigue Parameter, D

Fatigue Parameter, n

Applied Stress, P (ks/)

Uniform

Uniform with Tail

tx_nna_
t_xma]

Lognormal

0.0

5.833E-03

3.77E-07

3.60

11.0

I

0.4534 I3.584E-03 [

I  .ss -os I
Io.18 I

The performance function for the fatigue problem is

g(b) = g(T(b))= T(b)- Ts (3-3)
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where b is the random vector, Ts is the required service life, and T is the predicted fatigue life,

which is estimated using the Paris-Erdogan law [Paris and Erdogan, 1963]:

fa /
T= da

D( Z_ eq)n

(3-4)

where D and n are fatigue parameters, zsar_eq is the range of equivalent Mode I stress intensity

factor in a cycle given by

(3-5)

max min
The quantities Keq , Keq in Equation 3-5 are the minimum and maximum equivalent

Mode I stress intensity factors associated with the minimum and maximum cyclic applied

stresses, respectively, minIf Keq = 0, Equation 3-5 reduces to

_ max (3-6)
AK eq - K eq

The relation between the equivalent Mode I SIF (Keq) and SIFs (KI and Kll) is

represented by

ffx,- q x,, (3-7)

where a is the crack growth direction determined by the crack direction law [Erdogan and Sih,

1963]

KI sin tx + KII (3 cos a - 1) = 0 (3-8)
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The determinationof thehistory of Keq with the fatigue crack length (a) is the key task to

predict the fatigue life T (Equation 3-4). Since the fatigue life depends on the crack path, the

problem has to be solved in steps. For a given initial crack length ai and final crack length af,

nineteen steps are used to grow the crack from ai to as_ The initial crack length ai is discretized

into ten boundary elements and five dements are used in the subsequent crack growth stages.

The outer boundary of the plate (see Figure 3-8) is discretized into sixty-nine elements.

MCS was used to perform the probabilistic analysis, and the statistics of the fatigue life

are given in Table 3-5. The relatively large dispersion in the fatigue life (COV = 51%)

demonstrates the importance of using the stochastic approach in addressing fatigue problems.

The complexity and variability of a composite material will introduce additional uncertainty to

the problem. The cumulative distribution function of the fatigue life T is plotted in Figure 3-10

for both 200 and 1000 simulation histories. As expected, 200 histories gives accurate results for

the probability levels plotted here (approximately 0.05 to 0.95 for Nsim = 200). For the parallel

performance studies to follow we will, therefore, use 200 simulation histories. Samples of the

random curvilinear fatigue crack paths obtained on different Monte Carlo trials are plotted in

Figure 3-11. Due to the external Mode I loading, the crack path becomes rectilinear after a few

steps of the crack growth.

TABLE 3-5. STATISTICAL PARAMETERS OF THE FATIGUE LIFE.

Mean (I") Standard Deviation COV

1.32E06 0.676E06 51%

0.8

._ 0.6

/ I I
.J i-- Ns!m = 1000 I

0 __"°'-" .... "'-' ....
0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Cycles, N (Millions)

Figure 3-10. Fatigue Life CDF.
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Figure 3-11. Fatigue Crack Paths from Random Initial Orientation.

From sensitivity analysis of the fatigue life with respect to the problem random variables,

we can conclude that the fatigue parameter, D, and the initial crack length, ai, are the dominant

random parameters in the fatigue crack reliability analysis. The response sensitivity to the initial

crack angle, t_, is extremely small over the entire range of failure probability. The lack of

importance of a is mainly due to the dominance of the present Mode I loading.

3.2.4.2 Parallel Performance

The present fatigue problem is much more memory intensive than the 3D truss problem.

The memory requirement for this problem to run on one processor is 4 MB and the size of the

data-set, which needs to be replicated for each concurrent simulation execution is 3.3 MB. When

using twenty-four processors there will be twenty-four simulation trials executing concurrently

for a total memory demand of 80 MB. Since the memory size for the global cache (see Figure

3-1) is 4 MB using more than one processor requires that main memory be used. Thus we would

expect to see an immediate drop in efficiency when going to two processors.

Similar to the 3D truss problem, two configurations are used to allocate work load to the

processors; 2fooard and 4/board (see Figure 3-4). The comparison of efficiencies for both

configurations is shown in Figure 3-12.

For the 2/board configuration we observe an initial drop in efficiency going from one to

two processors. As mentioned above, using two processors requires the use of main memory;
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Figure 3-12. Parallel Efficiency for Fatigue Reliability Problem on Alliant FX/2800.

whereas with one processor the entire problem fits in the cache. When using from two through

twelve processors we see a gradual decrease in efficiency due to parallel overhead (i.e.,

management of concurrent processes, memory contention, and processor idling). Beyond twelve

processors we see a steeper downward slope that is mainly due to competition of three or four

processors on a single board for two communication channels (see Section 3.2.3.2).

Conventional parallel overhead (i.e., management of concurrent processes, memory contention,

and processor idling) also contributes to the loss in efficiency.

The 4/board configuration efficiency results are also shown in Figure 3-12. As expected,

the 4/board efficiency is always below the 2/board configuration's efficiency. The oscillation in

the value of efficiency is consistent with the oscillation in the average bandwidth, as was

described in detail for the 3D truss problem (see Section 3.2.3.2), for up to twelve processors.

Beyond twelve processors parallel overhead becomes dominant and efficiency declines

monotonically. The gentler downward slope of this curve, as compared with the 2/board curve,

is more indicative of efficiency loss from conventional parallel overhead (since the slope of the

2/_ard curve is dominated by communications channel contention).

The speedup factors for these two configurations along with the theoretical speed-up are

shown in Figure 3-13. The value of _ (i.e., the fraction of the work load that cannot be done in

parallel, Equation 1-1) is extremely small (_x = 0.000044) due the large cpu time required for

each simulation trial. The resulting theoretical speedup (see Equation 1-1) is almost linear as

shown. The value of the speedup for the 2/board configuration is always higher than the value

for the 4/board configuration due to the larger value in the average bandwidth. As the number of

processors increases, the speedup curves for both configurations approach a horizontal line. This

implies that increasing the number of processors will not result in additional speedup.
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Figure 3-13. Parallel Speedup for Fatigue Reliability Problem on Alliant FX/2800.

We should also point out that a portion of the loss of speedup at twenty-four processors is

due to communication channel contention (since we have four processors on each board sharing

two channels). This is evident if we extend a straight line through the four-processor and eight-

processor speedup values of the 4/board configuration out to twenty-four processors. The

difference between the actual speedup and this straight line is an approximate measure of the true

loss due to conventional parallel overhead.

It is important to recognize that for larger problems memory requirements could exceed

the size of physical memory as the full complement of processors is utilized. Thus, secondary

storage would have to be used (disk paging on the Alliant) resulting in a significant increase in

the apparent overhead and severely limiting the concurrency speedup. In this case, multiple

levels of parallelism could be exploited to reduce the problem memory requirements.

3.3 DISTRIBUTED-MEMORY ARCHITECTURE

3.3.1 Message-Passing Programming Paradigm with CS Tools

Communication between processors is the key issue in parallel implementation on a

distributed-memory machine, as opposed to competition for communicating with and the use of

global memory on the shared-memory machine. The conventional approach to developing code

on a distributed-memory multiprocessor uses a message-passing paradigm. Message passing is

accomplished using a set of library functions that are generally hardware-specific (some software

packages do exist, however, that will port to more than one machine, e.g., APPL and EXPRESS);

however, the principles of implementation are generic. Here our purpose is to investigate how to

parallelize a probabilistic analysis code on a distributed-memory machine using the message-
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passingparadigm.For this investigation we have selected the CS Tools library of functions that

operate on the Meiko Computing Surface hardware.

It is useful to view the distributed system as a £omputing surface network (CSN). CSN

communication between processors occurs through transports. Each transport in the network has

a unique address, which must be used by the sender of a message to identify the target of the

communication. As shown in Figure 3-14, both Processor 1 and Processor 2 create a connection

between the processor and the CSN.

Figure 3-14. Distributed-Memory Software Development: Message-Passing Paradigm with CS
Tools.

The communication between processors is analogous to making a telephone call. Using

this analogy, a person represents a processor, a telephone line represents a transport, the

telephone number is the Net Id of a transport and the telephone exchange represents the CSN.

The CS Tools Communications Library provides routines to create a connection between the

processor and the CSN (csnopen0); to register the transport's Net Id (csnregnarne0); and to find

the Net Id of another processor (csnlookupname0). Having established the Net Id of the

receiver's transport, the sender can pass its data by using either the blocking transmission routine

csntx0 or the non-blocking transmission routine csntxnb0. Similarly, the receiver can receive

the data by either calling the function, csnrx(blocking), or csnrxnb(non-blocking). The main

difference between blocking and non-blocking is that the blocking communication call will

always suspend the calling process until the transfer has completed, whereas a non-blocking

communication call will return almost immediately. In order to minimize processor idle time,

non-blocking data transmissions are employed in this study.

In the parallel computation, the total amount of computational work has to be distributed

and allocated to the available processors. This is achieved by using the master-slave model as

shown in Figure 3-15. The function of Master.F is to generate tasks and to perform the load

balancing and distribution of jobs to separate processes. Each slave process assigned to a given

processor performs its task (e.g., simulation trial in MCS or sensitivity calculation in

FORM/SORM), and sends the result back to the master processor for post-processing. As
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Figure 3-15. Master-Slave Model for Distributed-Memory System.

non-blocking communications always return control to the caller without waiting for the

transmission to complete, the non-blocking communication is used for the data passing and

receiving between processors to enhance efficiency. As shown in Figure 3-15, the master

continuously generates the jobs and puts them in its job buffer for a slave to pick up and

consume. Similarly, a slave processor keeps sending results to the results buffer for the master to

pick up. Since both csnrxnb and csntxnb only queue buffers for reception or transmission of

messages and return control to the caller immediately, an additional function, csntest, must be

used periodically to determine the completion status.

A flowchart of the code segment for non-blocking communication between the master

and a slave is shown in Figure 3-16. As shown in the figure, the master puts N jobs in the job

buffer using non-blocking transmission csnrxnb0, where IS_M and ID_S(j) are the ID number of

the master and the jth slave on the CSN, respectively. After that, the master queues a result

buffer. The completeness of both the non-blocking transmission and reception are checked by

calling the routine, csntest. Based on the sign of the tag returned by csntest (itag), it can be

determined whether the sending or receiving has been completed. For the present Monte Carlo

Simulation implementation, the subroutine nextjob involves the random number generation and

the subroutine nextresult performs the scoring and summation.

Each slave process queues a job buffer by using csnrxnb0. The completeness for

receiving and sending is then checked using csntest0. For the case when the receiving is

completed (itag = 1) the slave will consume the job and send the results back to the master. The

subroutine slave work performs all the deterministic analysis. For the case where the

transmission of results is completed (itag = -1), the result buffer is re-queued to store the next set

of results.

5721 3-18



Doj= 1, N

Call csntxnb (Id_M, O, Id_S(j), jobbuffcr, isizc, j)

End do

Callcsnrxnb([d_M,results,isize,Rag)

-_ Callcsntcst(Id_M,),timcout,ipccrid,itag,
status)

Rag > 0 f _tag < 0

Complete Sending I I Complete receivingJob Consumed results obtained

I Call csntxnb ( ) [ Call csnrxnb ( )
I

Callnext result

(Slavel.F)3

-_ Call csntcst (Id_S, O, time.out, ipeedd, Rag, I

I

status I

Slave work

I Store results
1

0, Id_M, results,
is_, -1)

I

Call csnrxnb() I
i

re-queue the result
buffer

Figure 3-16. Implementation of Master-Slave Model for Parallel Fatigue Reliability Analysis
with CS Tools.

In the code, the non-blocking transmission is organized in such way that it does not

matter if the solution time of the jobs has a large variation. In other words, one processor can

process many small jobs without being blocked by another processor taking a long time to

process a single job; thus a natural load balancing occurs.

The specific application of the Master-Slave model to Monte Carlo simulation can be

described as follows. First, the master code must generate the random parameters. This is

performed in the routine nextjob. The generated job is processed by any slave that happens to be

free at the time. When the number of simulations reaches the total number of desired histories,

the master code sends a synchronization signal to each slave processor. Once the master

processor receives a response to the synchronization signal from each slave processor, the

process of scoring and statistical analysis on the simulation data is performed. Finally, the

master transport is closed by calling the library routine, csnclose.

The slave processor first receives the deterministic problem parameters sent by the master

by calling the routine slaveinit (not shown in Figure 3-16). Next, the slave processor checks its

own job buffer to see whether there is a real job or an end signal (i.e., the synchronization signal)

sent by the master. For a real job, the slave processor first finds a free result buffer and gets the
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set of random parameter realizations from its job buffer. Then, the slave processor performs the

deterministic analysis by calling the slavework routine and sends back the result to the master.

Once the result has been sent, both the job buffer and result buffer are re-queued for the next

simulation. If the slave processor receives the end signal, it sends the same signal back to the

master to allow for the final scoring and statistical analysis.

3.3.2 Virtual Shared-Memory Programming Paradigm with C-Linda

3.3.2.1 Overview

As an alternative to the message passing paradigm we next investigated the virtual

shared-memory paradigm. The virtual shared-memory approach generally carries additional

overhead but it has the advantage of portability across a wide range of parallel platforms and

memory architectures. Given that software development and maintenance is an expensive and

time-consuming process, portability is one of the key issues in software design and

implementation for parallel architectures today. That is, it is desirable for software systems to be

able to run on any reasonable parallel computer with little or no modification. This will be

critical to enhancing the commercialization potential of this SBIR. Another important factor is

that the parallel language be general enough to support the programming model appropriate for

the problem at hand. The virtual shared-memory approach will readily support the multi-level

parallelism that will be required to achieve large-scale paraUelization.

For implementation of the virtual shared-memory paradigm on a distributed-memory

machine we selected the C-Linda language. C-LINDA is a toolkit of routines that implements

the virtual shared-memory model, known in C-Linda as "tuple space." These routines replace the

low level message passing and synchronization mechanisms found in other parallel programming

methods. C-LINDA consists of a few simple operations which control process creation and

coordination and are orthogonal to the base language in which it is embedded.

C-LINDA was developed specifically to solve the problem of portability among different

parallel computer architectures. C-LINDA has implementations on both shared-memory

machines and distributed-memory machines. Another feature of C-LINDA is that

implementations exist for local-area networks. Even though the communications over a local-

area network is substantially slower than a parallel machine, coarse grain problems perform

satisfactorily on local-area networks because the communication to computation ratio is very

small. Many sites have computation intensive problems and, while lacking parallel computers,

have networks of occasionally under-used or idle workstations. Converting unused workstation

resources into performance gains is an economical and attractive possibility.

To discuss the implementation of any parallel processing application using LINDA, it is

useful to understand the abstract programming models used in designing parallel software. In

terms of software design for parallel computers, we can envision parallelism in terms of three

conceptual classes: a program's results, a program's agenda of activities, or an ensemble of

specialists that collectively constitute the program [Carriero and Gelernter, 1989]. In result
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parallelismthe applicationisdesigned around the data su'uctureyielded as the ultimateresult.

Resultparallelismfocuseson the shape of thefinalproductand we get parallelismby computing

allelements of the resultsimultaneously. With agenda parallelismthe applicationisdesigned

around a listof activitiesand parallelismisachieved by assigningmany workers to each task.

The thirdclassof parallelism,the ensemble of specialists,rcsuks when the applicationisa model

of a logicalnetwork of some type,with each node performing a specialtask,parallelismresults

from each node performing a specialand distinctfunctionsimultaneously.

Corresponding to these threeclassesof parallelismarc three programming methods or

techniques for translatingconcepts intoworking programs: (1) message passing,(2) livedata

structures,and (3)distributeddatastructures.In message passingwe createmany processesand

enclose every data structurein some process. Figure 3-17 illustratesmessage passing where

processes arc round, data objectsarc square and messages arc oval. With thismethod no data

objectsare shared and processescommunicate by passingmessages to each other.This message

passing isexplicitlyspecifiedinthe program code. Message passing isoftenused toimplement

theensemble of specialistsclassof parallelproblems. The livedatasu'ucturctechniqueisatthe

other end of the spectrum from message passing and isused toimplement resultparallelism.A

livedata structureprogram, illustratedinFigure 3-18,isbuiltin the shape of thc resultingdata

structure.Each process isan independent entityand when theprocess iscomplete itreturnsone

pan of the result.Live data structureprocessesdo not pass messages, ratherthey simply refcrto

each other as elements of some data structure.The message passing and livedata su'ucturc

techniques are similarbecause allof the dataisdistributedamong the processesand thereisno

globalmemory. In message passing,however, process creationand communication ishandled

explicitlyby theprogrannncr. In livedatasu'ucturcprograms, processesarc createdimplicitlyin

the course of buildingthe data structureand communicate with other implicitlyby referringto

elements of the data sn-ucmrc. In between allowing allthedata to be absorbed intothe process

structureor allprocessesresultingindataelements isan intermediatetechniquewhich maintains

the distinctionbetween a group of dataobjectsand a group of processes. These distributeddata

structureprograms sharedata and communicate by placingdataobjectsin a common sharedarea

as shown in Figure 3-19. Agenda parallelismmaps naturallyonto distributeddata structurc

programs. In thistype of parallelismmany workers work on what isin effecta singlejob and

any worker willbc willingtopickup any subtask.

As can be seen from the previous discussion,parallelcomputational algorithms usually

fallnaturallyinto one of the three conceptual classes: (1) resultparallelism,(2) agenda

parallelism,or (3) specialistparallelism.The programming technique then follows from the

conceptual class.Linda'svirtualshared-memory ("tuplespace")model allowsforprograms tobc

easilydeveloped with eithermessage passing,livedata structures,or distributeddata structures.

Figure 3-20 illustrates the essentials of the virtual shared-memory approach. Tasks and

data, called tuples, are place into thc tuplc space (i.e., the virtual shared-memory) to be worked

on by available processors. There arc two types of tuplcs: process tuplcs that generate use, and

consume tuplcs; and data tuples that are essentially passive data to be operated on. Since process
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Figure 3-19. Distributed Data Structures [Carriero and

Gelemter, 1989].

tuples are worked on by the next available processor a natural load-balancing is achieved. Table

3-6 shows the four basic C-Linda functions used to manipulate tuples.

3.2.2.2 Application of C-Linda for Multi-Level Parallelism

For the fatigue reliability problem, parallelism can be identified at several levels. For this

Phase I implementation we used C-Linda to exploit two levels of parallelism: the Monte Carlo

simulation loop and the Green's function computations to obtain the influence coefficients for

displacement along the plate boundaries due to crack opening displacement (these influence

coefficients must be recomputed for every Monte Carlo trial). The computations are performed

in parallel in C-Linda using agenda type parallelism which is analogous to the Master-Slave

model used in the message passing paradigm. We will describe first how the Monte Carlo loop

is parallelized using C-Linda. This will be followed by a description of how the influence

coefficient computations are parallelized.

In the original sequential MCS code, the subroutine determ (for deterministic evaluation

of the fatigue life for a set of input parameters) is called once for each Monte Carlo history:
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Figure 3-20. Distributed Memory Software Development: Virtual Shared-Memory Paradigm
with C-Linda.

TABLE 3-6. BASIC LINDA FUNCTIONS.

Function Description

out (0

in (0

rd (t)

eval (0

Evaluate t and place it in tuple space.

Withdraw t from topic space.

Read t from mple space.

Evaluate tafmr it is placed in tuple space.

Original Sequential FORTRAN ...

do 140 npceffil,nr

call determ (npce, xci (npce) ,yci (npce), cth (npce), cai (npce),

&car (npce), dfp (npce), fpn (npce), rff (npce), ncdf, tsv, fail (i, npce),

&st r sst, x, y, xm, ym, cx, cy, ssol rdsol tgq h, kode, fil,

&2*nbp)

140 continue

In the LINDA Master-Worker implementation, the Master process places the initial

history number into Linda's virtual shared-memory m tuple space -- and starts a Worker process

on each node.
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In the LINDA MASTER ...

/*
C

C Output initial history number

C

out ("histnum", i) ;

/*
C

C

C

START PROCESS ON EACH WORKER

...... */

for ( i=0; i<numworkers; i++ )

{
eval("worker", worker());

]

C

C GET HISTORY DATA FROM WORKERS

C

for (i = i; i <= nr; ) /* for i=num of hists */

{
stat=inp("hist ", i, ? dtempl, ? dtemp2, ? xcm, ? ycm, ? xc, ? yc,

? cgdir, ? sif, ? cod, ? ftl, ? fail[i-l] );

if ( stat ) /* if worker history data available */

(
st += dtempl;

sst += dtemp2;

output(xcm, ycm, cod, sif, cgdir, xc, yc, & ftl, & idly,

& nstp, &ncp, & i);

i++;

}
else /* else let Master calculate one history */

{
if ( moredata ==I )

{
in("histnum", ? itemp) ;

out("histnum", itemp + I);

if (itemp <= nr )

{
mworker (itemp) ;

]
else

{
moredata=0;

)
}

)
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Each Worker process simply retrieves the next history number to be calculated and calls

the same determ subroutine called in the original sequential code. When determ returns, the

Worker writes the history data to the tuple space and attempts to work on another history.

In the LINDA WORKER . ..

while ( 1 )

{
in ("histnum", ?histnum);

out ("histnum", histnum+l) ;

if ( histnum > nr )

(
break;

}
determ(&histnum, &xci[histnum], &yci[histnum], &cth[histnum],

&cai [histnum], &caf [histnum], &dfp [histnum], &fpn [histnum],

&rff[histnum], &ncdf, &tsv, &fail[histnum] [0], &st, &sst,

x, y, xm, ym, cx, cy, ssol, dsol, g, h, kode, fil, &itemp,

xcm, ycm, xc, yc, cgdir, sif, cod, &ftl, &n, &l, nc, &m,

&ge, &xnu, &nstp, &ncp, &idiv);

out("hist",histnum, st, sst, xcm, ycm, xc, yc, cgdir, sif, cod,

ftl) ;

As the Workers place data from each history into the tuple space, the Master retrieves and

processes (i.e., scoring) the data. If at any time there is no history data for the Master to process,

the Master will itself pitch in and perform a history calculation in order to make full use of

computing resources at all times. The entire process continues in parallel until all histories have

been calculated.

The above programming model is directly applicable for other probabilistic analysis

methods (e.g., FORM/SORM/FPI, response surface, etc.) with only minor modification, since

they all require repeated independent evaluations of the problem performance function.

In the event that the ratio of the number of available processors to the number of

independent probabilistic analysis solutions is large (e.g., for small sample MCS or non-MCS

methods), or the problem has large memory requirements it would be advantageous to exploit

additional levels of parallelism. We illustrate below how the virtual shared-memory model is

well-suited to invoking multiple levels of parallelism.

In the Monte-Carlo loop parallelization described above, the Linda eval function was

used to create process tuples (workers) to perform the independent history calculations. The

following code is a section of the determ routine (for deterministic evaluation of the fatigue life

for a set of input parameters) that is called once from each "evaled" worker to perform history

calculations. The objective here is to now add another level of parallelism and perform one of

the sub-loop calculations in parallel.

We illustrate here how we can parallelize the "do 40 k =" and "do 40 j =" nested loop

(the "boxed" code shown below). In this nested loop, the subroutine udgrma (evaluation of

boundary node influence coefficients for displacement along the plate boundaries due to the

5721 3-25



crackopening displacement) is called repeatedly to perform n*ncp0 independent calculations. In

the following code, the p_udgrma routine (parallel udgnna) replaces the boxed code to perform

the nested loop in parallel.

do 20 i=l,nstp

nce= ((i-l) *ncp+idiv) *2

nsize=2*n+nce

do 9 k=l,nsize*(nsize+l)

9 sto (k)=0. dO
if (i.gt.2) then

ne (i) =ne (i-l) +ncp

end if

if (i.eq.l) then

dclO=dil

ncpO=idiv

else

dc 10 =dc 1

ncpO=ncp

end i f

do 25 j=l,ncpO

xc (ne (i) +j) =xc (ne (i) +j-l) +dclO*dcos (cgdir (i))

yc (he (i) +j )=yc (ne (i) +j-l) +dclO*dsin (cgdir (i))

25 continue

do 26 j=ne(i),ne(i)+ncpO-i

xcm(j) = (xc (j) +xc (j+l))/2

ycm(j) = (yc (j) +yc (j+l))/2

26 continue

call p .._._(xc, yc, udg, ne(i), ncpO, n)

do 40 k=l, n

do 40 j=ne(i),ne(i)+ncpO-i

call udgrma(xm(k),ym(k),xc(j),yc(j),xc(j+l),yc(j+l),

udg((2*k-l) , (2" j-l) ) ,udg((2*k-l) ,2*j) ,

udg (2*k, (2* j-l) ) ,udg (2*k, 2*j) ,ge,xnu)

continue4O

&

&

45

do 45 k=l,ne(i)+ncpO-I

call angel(xcm(k),ycm(k),xc(k+l),yc(k+l),alph)

do 45 j=ne(i),ne(i)+ncpO-I
call sdtrma (xcm(k) ,ycm(k) ,alph, xc (j) ,yc (j) ,xc (j+l) ,yc (j+l) ,

sdt ((2*k-l) , (2*j-l)) ,

sdt((2*k-l) ,2*9) ,sdt (2*k, (2*j-l)) ,sdt (2*k, 2*j) ,ge, xnu)

continue

do 60 ic=l,i-i

do 65 k=ne(i),ne(i)+ncpO-I

if (ic.eq. i) then

ncO=idiv

else

ncO=ncp

end if

The parameters to udgrma are dements from the arrays xm, ym, xc, yc, udg, and the

scalars ge and xnu. The xm and ym arrays, which are the boundary element coordinates, and the

ge and xnu scalars, which are material properties, are invariant throughout the entire problem,

and are placed into the tuple space by the Master routine at the beginning of the calculation. The

xc and yc arrays are the crack path coordinates and are updated inside the "do 20 i =" loop. This

fact requires the xc and yc arrays be placed into the tuple space prior to each execution of the
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nested loop. The p_udgrma routine (written in C) is shown below. This routine simply places

npc0 do_udgrma workers into the tuple space and retrieves the result data as it becomes

available. The nested loop to retrieve the udgrma data has the nesting order reversed from the

original FORTRAN code. This is because the udgrma data will become available in k order

because we have nl:_0 processes performing k udgrma calculations. We note that this is a much

finer grained parallel implementation than the Monte Carlo loop, and parallel efficiency will be

highly dependent on the particular hardware and the compute/communicate ratio (it would be

ideally suited for implementation on a hybrid-memory architecture).

void p_udgrma(double *x¢, double *yc, double udg[2*nstpl*nepl][2*nbp],
int *ne, int *ncp0, int *n)

{
int i, j, k;

/* place xc and yc arrays into the TS */
out("data-xc",xc);
out("dam-yc",yc);

/* start npcO do udgrma processes */

for (i=*ne; i< (_ne+*npcO); i++)

{
eval ("udgrma", do_udgrma(i, *n) ) ;

}

/* retrieve the udgrma data */

for (j=*ne; j<=(*ne+*ncpO-l); j++)

{
for (k=l; k<=n; k++)

{
in ("udgrma_output",

in ("udgrma_output",

in ("udgrma_output",

in ("udgrma_output",

}
}

}

j, k, i,

j, k, 2,

j, k, 3,

j, k, 4,

?udg[2*j-2] [2"k-2] ) ;

?udg[2*j-l] [2"k-2] ) ;

?udg[2*j-2] [2*k-l] ) ;

?udg[2*j-l] [2*k-l] ) ;

The do_udgrrna routine shown below is the worker process for p_udgrma. It is

responsiblefor retrievingthe necessary data from the tuplespace and callingthe FORTRAN

routineudgrma n times,and then outingtheresultsfrom each callback tothe tuplcspace. Each

do_udgrma routineperforms one iterationof the originalouterloop,i.e.j isconstantand unique

foreach do_Udgrma nodc.

void do_udgrma(int j, int n)
{

int i, k;

double udgl, udg2, udg3, udg4;

/*retrievethexc,yc,xm, andym arraysfromtheTS */

rd('dam-xc",?xc);
rd('dam-yc",?yc);
rd("data-xm",?xm);
rd("data-ym",?ym);
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for

{
(k=l; k<=n; k++)

/* FORTRAN CALL */

#ifdef PREPEND

_udgrma(&xm[k-l],&ym[k-l],&xc[j-l],&yc[j-l],&xc[j],&yc[j],&udgl,&udg2,

&udg3,&udg4);

#elseif

udgrma(&xm[k-l],&ym[k-l],&xc[j-l],&yc[j-l],&xc[j],&yc[j],&udgl,&udg2,

&udg3,&udg4);

#endif

out("udgrma_output", j, k, I, udgl);

out("udgrma_output", j, k, 2, udg2);

out("udgrma_output", j, k, 3, udg3);

out("udgrma_output", j, k, 4, udg4);

3.3.3 Parallel Performance of the Fatigue Reliability Problem with C-Linda

For this Phase I research we selected the virtual shared-memory programming approach

for implementation and evaluation. There were three reasons for this. First the virtual shared-

memory approach allows straightforward implementation of multiple levels of parallelism and,

therefore, can be used to develop parallel control algorithms to automatically invoke multiple

levels of parallelism (a proposed Phase II research task). Second, we believe that this approach

has Phase III commercialization potential because it offers the advantage of portability across a

diverse range of hardwares (including shared-memory, distributed-memory, and networks of

workstations). Third, the virtual shared-memory approach will, in the future, allow easy

adaptation of the software to hybrid-memory architectures, which are likely to be optimal for

parallel PCM. We will evaluate here the efficiency of this approach for inplementing one level

of parallelism. It remains for Phase II to evaluate the efficiency of this approach for

implementing multiple levels of parallelism.

The fatigue reliability problem was parallelized using C-Linda as described above. The

parallel performance was then tested on a distributed-memory network of workstations using the

Monte-Carlo loop parallelism. The main reason for selecting the network platform was to

determine the feasibility of using networks for parallel processing in addition to conventional

parallel computers. The capability to use the network platform without modifying the parallel

code, should significantly increase the chances for commercial success of this SBIR.

Figure 3-21 shows the near linear speedup obtained for the fatigue problem. Because the

compute to communicate ratio is very large and because each processor has its own local

memory, these systems exhibit scalable behavior (i.e., near linear speedup as the number of

processors increases). The excellent performance on a network with relatively small

communications bandwidth indicates that high efficiency can be achieved on distributed-memory

multiprocessors that are equipped with specialized communications hardware.
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CHAPTER 4

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

4.1 SUMMARY

The objective of this Phase I research was to establish the required software and hardware

strategies to achieve large-scale parallelism in solving problems in probabilistic response

analysis of high temperature composites. To meet this objective, several tasks were conducted.

First, we identified the multiple levels of parallelism in probabilistic composite mechanics.

Parallelism was identified in several areas including: (1) the probabilistic computations; (2)

general structural mechanics; and (3) specialized parallelism in PCM. This research culminated

in outlining a comprehensive multi-level computational strategy to exploit these sources of

parallelism in a way that minimizes memory/processor requirements while minimizing parallel

overhead. The strategy incorporates a top-down approach to maximize average granularity and

specially designed computational algorithms (probabilistic substructuring coupled with domain

decomposition and the stochastic preconditioned conjugate gradient solver). Parameters for

determining how many levels of parallelism to invoke to maximize speedup for a particular

problem and hardware platform were identified.

Next several software implementations and hardware efficiency investigations were

undertaken to establish the most promising approaches to follow in Phase II and ultimately Phase

III commercialization. The software implementations included a physical shared-memory model

(for shared-memory computers), a message passing model (for distributed-memory computers),

and a virtual shared-memory model (for either architecture, for hybrid architectures, and for

networks of workstations). The hardware implementations included a shared-memory computer

with twenty-four processors, and a distributed-memory network of seven workstations. The list

below summarizes these studies:

o Shared Memory, Alliant FXI2800. Two problems, one with small memory

requirements (a 3D space truss) and one with larger memory requirements
(fatigue life reliability of a plate with an initial defect via the stochastic boundary
element method). The purpose here was to investigate the affect of memory

requirements for parallel efficiency for shared memory systems. Parallel speedup
studies were performed using one to twenty-four processors.

. Distributed Memory Software Development using Message Passing Paradigm.
Code was developed for solving the fatigue life reliability problem using CS
Tools to investigate the feasibility of parallelizing probabilistic analysis using the

message passing paradigm.

. Distributed Memory Software Development using Virtual-Shared Memory

Paradigm. Code was developed for solving the fatigue life reliability problem
using C-Linda to investigate the feasibility of parallelizing multiple levels of

parallelism using the virtual shared-memory paradigm. Both the Monte-Carlo
simulation loop and computation of the influence coefficients during each

simulation history were parallelized.
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°
Distributed-Memory Network. The feasibility of achieving parallel speedup on a

distributed-memory network of workstations using the virtual shared-memory
programming paradigm was investigated. Parallel speedup studies were
performed for the fatigue reliability problem using one to seven workstations.

4.2 CONCLUSIONS AND RECOMMENDATIONS

The investigations in Phase I demonstrated that it is possible to effectively paraUelize

probabilistic structural analysis codes to achieve high parallel speedup for certain classes of

problems on certain hardware types. However, it is clear that special strategies will be needed to

achieve large-scale parallelism to keep large numbers of processors busy and to treat problems

with the large memory requirements encountered in practice.

Reducing memory/processor demand is a key factor to achieving large-scale speedup for

both shared and distributed-memory platforms. For shared-memory, large memory requirements

result in memory contention and congestion in processor-to-memory communications. In

addition, when parallelizing only the top level probabilistic analysis computations, memory

requirements increase almost proportionately with the number of processors. Hence, there is a

potential that using all processors could result in memory demand that exceeds the size of

physical memory, thereby requiring the use of secondary storage. In such cases speedup can

reduce with increasing numbers of processors. For distributed-memory, we do not have the

shared-memory bottleneck, however, if the task assigned to a processor cannot fit in its local

memory its performance will be significantly slowed.

To alleviate memory/processor demand special computational strategies for parallel PCM

are needed. A strategy was outlined herein that combines a domain decomposition approach

with the probabilistic substructuring technique and the stochastic preconditioned conjugate

gradient equation solver. A boundary element analog of the probabilistic substructuring

technique was used successfully in solving the fatigue reliability example problem. The

computational strategy reduces the memory demand per processor and also increases the degree

of parallelism. We recommend, therefore, that research continue to investigate these special

computational approaches.

Commercialization is a key objective of this SBIR. In this regard, we conclude that the

parallel computing environment should be portable across a range of hardwares and should

incorporate automated problem decomposition and parallelization control algorithms to free the

user from this tedious task. The virtual shared-memory programming paradigm is well suited to

meet the needs of portability and also provides the flexibility to implement the control algorithms

and invoke the multiple levels of parallelism in PCM. In addition, using the virtual shared-

memory approach will, in the future, enable the software to be ported to hybrid memory

architectures that are now becoming available and are ideally suited for parallel solution of PCM

problems. Finally, using the virtual shared-memory approach will allow for execution on widely

available networks of single and multi-processor workstations, which will significantly increase

the customer base. From the Phase I studies we can conclude that workstation networks are well

suited to exploit at least the top level coarse-grained parallelism in PCM problems. It remains to
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evaluatethe efficiency of the virtual sharedmemoryparadigmat exploiting multiple levelsof

parallelism.

Basedon thePhaseI studieswecansummarizeourconclusionsandrecommendationsas
follows:

°
There are several levels of parallelism in PCM problems that will need to be taken

advantage of in order to fully exploit the potential of parallel processing

computers.

. Specially adapted computational algorithms should be developed for efficient
parallel implementation of many practical problems in order to reduce memory

requirements and processor idling.

° Parallel control algorithms should be developed to automatically decompose a

problem and exploit the multiple levels of parallelism in PCM problems to
increase the practical usability of parallel PCM codes.

. The parallel PCM code should be portable across a range of architectures to
increase the commercial viability of the software. Availability on workstation

networks is also desirable to further increase the customer base.

o The virtual shared-memory programming paradigm can provide the desired

portability and flexibility to easily exploit multiple levels of parallelism in PCM
problems. It remains to eevaluate the efficiency of this approach in implementing

multiple levels of parallelism.

° Shared-memory hardware can be highly efficient for probabilistic analysis

problems for small numbers of processors. Even for the large fatigue reliability
problem, better than 90% efficiency was achieved for ten processors. However,
parallel performance degrades with increasing numbers of processors and it is
possible to obtain negative return with increasing numbers of processors
(generally, because physical memory becomes overloaded such that disk paging is

required).

. Coding on shared-memory multi-processors is straightforward for a single level of
parallelism. For multi-level parallelism, special constructs and significant code

rewriting is required.

. Distributed-memory architectures are preferable to shared-memory for achieving

large-scale parallelism because PCM problems have at least one level of coarse-
grained computations. Although distributed-memory systems have a
disadvantage with regard to communications, the overhead cost associated with
shared-memory is not justified. For a shared-memory machine, access to the
shared memory will become a bottleneck when using large numbers of

processors.
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= Hybrid-memory architectures, consisting of an interconncction of shared-memory
processor nodes (i.e., four to eight processors that share memory at a node) will
likelybe optimal for parallelPCM problems. This architecturemaps dirccdy to

the multiplelevelsof both coarseand finegrainedparallelismexhibitedby PCM

problems. This isan emerging technology and is typifiedby the IntclParagon
machine, networks of Silicon graphics multi-processor workstations, and thc

NASA Hypcrclustcrmachine.
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